
Release 1.2 - 07/02/2023 by Prof. Emanuele Lattanzi

PH.D. ResearchMethods in Science and Technology

Executing applications on RemestHPC
Usage of Singularity containers in a shared environment to access computation resources.

The software has grown in complexity over the years making it difficult sometimes to install,
update and run it. Moreover, ReMeST is a strongly interdisciplinary PH.D., and the number of
software that can be used by students/teachers is potentially high. Containers address this
problem by storing the software and all its dependencies (including a minimal operating
system) in a single image so that there is nothing to install. This makes the software both
shareable and portable while the output becomes reproducible.

1. Accessing to the remestHPC server

The remestHPC server can be reached only through a VPN connection which needs to be
activated by Uniurb ICT staff. Once activated, it will be possible to connect to the server using a
VPN client (the use of FortiClient VPN is recommended). The VPN configuration is the follow:

remote gateway: vpnssl.uniurb.it

port: 443

client certificate: none

username: your uniurb account

password: your uniurb password

Once the VPN connection is active, you need to use an RDP client to access the remote
desktop which is reachable at the following address: 172.19.2.250 with the default RDP port
(3389).

Alternatively, a normal browser can be used to take advantage of the web access offered by
the Guacamole application which is listening on the 8383 port of the same address
(172.19.2.250:8383) using the following credential:

username: remestHPC

password: remestHPC

Release 1.2 - 07/02/2023 by Prof. Emanuele Lattanzi

2. Singularity as a Secure Alternative to Docker

Docker images are not secure because a malicious user can gain root access, with a privilege
escalation mechanism, to the system they are running on. For this reason, Docker is
unavailable on the RemestHPC (neither is nvidia-docker). To overcome the problem,
RemestHPC offers Singularity, an alternative to Docker that is both secure and designed for
high-performance computing. Singularity is compatible with all Docker images and it can be
used with several types of GPUs applications.

3.Running a Singularity container

Singularity is a container platform specifically for high-performance computing. It runs
container images that are compressed on .sif files.

RemestHPC offers several ready-to-use containers accessible to the read-only directory
/software of the main storage.

Running:

To run the default command within the Singularity image use, for example:

$ singularity run -p -B /run/user/$UID /software/remest_octave_6.2.0.sif

To execute the octave command with the argument --guiwithin the container use:

singularity exec -p -B /run/user/$UID /software/remest_octave_6.2.0.sif octave --gui

Notice that, the -B /run/user/%UID option force the locale directory /run/user/$UID to
be mounted on the same path within the container. This is needed to allow dconf within the
container to write shell or GUI configuration into the user space. A running container
automatically mounts these paths:

1. /home/$USER #your Linux home on remestHPC
2. /tmp
3. #the directory from which the container was run

To save the processing results it will therefore be sufficient to move within the file system of
the container by identifying the mount point of your home on the remstHPC server.

Get a shell within the container:

Use the shell command to run a shell within a container:

$ singularity shell -p -B /run/user/$UID /software/remest_octave_6.2.0.sif

Singularity> cat /etc/os-release

Singularity> cd /

Singularity> ls -l

Release 1.2 - 07/02/2023 by Prof. Emanuele Lattanzi
Singularity> exit

Environment Variables:

Singularity by default exposes all environment variables from the host inside the container. Use
the --cleanenv argument to prevent this:

$ singularity run -p --cleanenv -B /run/user/$UID /software/remest_octave_6.2.0.sif

4. Accessing GPUs with Slurm

To administer the GPUs utilization, remestHPC uses the Slurm scheduler which offers an
automatic allocation policy and a jobs enqueuing mechanism. Using Slurm to access the GPUs
is mandatory because remestHPC hides these resources for the tasks executed outside of
Slurm.

Requesting a GPU and running a task:

RemestHPC staff created a script to simplify the start of a singularity container through Slurm
execution called cstart.

To execute a task and request one of the three available GPUs, for a maximum time of 4 hours
use:

$ cstart -g 1 -h 4 <path to the container .sif file>

For instance, to request two GPUs and run the Matlab container with a time limit of 6 hours
you can use:

$ cstart -g 2 -h 6 /software/remest_matlab_r2022b_gpu.sif

Notice that the maximum time you are allowed to lock a GPU is 48 hours, if you need more
time please send an e-mail to remest@uniurb.it

You can also start a container using the native srun command where you need to specify the
--deadline=xxxx slurm parameter to declare the maximum allowed time, and the --nv
singularity parameter to allow it to mount Nvidia drivers. For instance, to specify a deadline of
two hours you have to write: --deadline=now+2hours

$ srun --gpus=1 --pty --deadline=now+2hours singularity run -p --nv -B

/run/user/$UID /software/remest_matlab_r2022b_gpu.sif

mailto:remest@uniurb.it

Release 1.2 - 07/02/2023 by Prof. Emanuele Lattanzi

Running a task in an interactive mode:

srun does not release the shell so if you need to write commands within the container use the
option --pty to enable interactive mode.

$ srun --gpus=1 --pty --deadline=now+2hours singularity run -p --nv -B

/run/user/$UID /software/remest_matlab_r2022b_gpu.sif

If the requested CPUs are not available because already locked by other tasks, the scheduler
enqueued the job until these are unlocked. So you have just to wait.

$ srun --gpus=2 --pty --deadline=now+2hours singularity run -p --nv -B

/run/user/$UID /software/remest_matlab_r2022b.sif

srun: job 197 queued and waiting for resources

Schedule a batch execution:

Slurm support also the batch execution by means of sbatch command with an appropriate
batch script.

Below is a Slurm script appropriate for a GPU code such as TensorFlow:

#!/bin/bash

#SBATCH --job-name=myjob # create a short name for your job

#SBATCH --gpus=1 # number of gpus per node

#SBATCH --time=00:05:00 # total run time limit (HH:MM:SS)

#SBATCH --mail-type=begin # send email when job begins

#SBATCH --mail-type=end # send email when job ends

#SBATCH --mail-user=<YourNetID>@uniurb.it

singularity exec -p -B /run/user/$UID --nv
/software/remest_tensorflow_22.10.1-tf2-py3_gpu.sif python3
/home/<user>/myPythonScript.py

How to kill a Slurm job:

The normal method to kill a Slurm job is:

$ scancel <jobid>

You can find your jobid with the following command:

$ squeue -u $USER

If the the job id is 123 then to kill the job:

$ scancel 123

Release 1.2 - 07/02/2023 by Prof. Emanuele Lattanzi

5.Containers available on RemestHPC

RemestHPC offers the following container in .sif format located inside the /software
read-only directory:

remest_gromacs_2022.3_gpu.sif

remest_matlab_r2022b_gpu.sif

remest_octave_6.2.0.sif

remest_openMM_gpu.sif

remest_qiime_core_2022.8.sif

remest_tensorflow_22.10.1-tf2-py3_gpu.sif

These original Docker containers have been modified to allow no-root execution within
Singularity.

remest_gromacs_2022.3_gpu:

This allows the execution of GROMACS molecular dynamics analysis software using Nvidia
GPU acceleration.

Use cstart to start the container with 2 hours of running limit and access one GPU:

cstart -g 1 -h 2 /software/remest_gromacs_2022.3_gpu.sif

remest_matlab_r2022b_gpu:

This allows the execution of Matlab2022b using both CPU and Nvidia GPU acceleration. You
will be prompted to insert a valid Matlab license during the first run. See
https://www.uniurb.it/ateneo/servizi-ict/utilita/matlab to configure your academic license.

Use cstart to start the container with 2 hours of running limit and access one GPU:

cstart -g 1 -h 2 /software/remest_matlab_r2022b_gpu.sif

remest_octave_6.2.0:

https://www.uniurb.it/ateneo/servizi-ict/utilita/matlab

Release 1.2 - 07/02/2023 by Prof. Emanuele Lattanzi

This is a Linux container whit installed GNU Octave and Gnuplot tools. It is NOT Nvidia
accelerated container but it can still take advantage of the great performance of Xeon
processors. This means that you do have not to request GPUs to run it.

Octave can be run both in the command line and in GUI environments (--gui as a running
option).

To execute the octave in the command line environment with 4 hours of running limit; then
start octave on the Singularity shell:

cstart -h 4 /software/remest_octave_6.2.0.sif

Singularity> octave

To execute it with GUI add --gui option:

cstart -h 4 /software/remest_octave_6.2.0.sif

Singularity> octave --gui

remest_openMM_gpu:

This is a Linux container whit installed the high-performance toolkit for molecular simulation
called openMM.

To get a shell on the container with 4 hours running limit type:

cstart -h 4 /software/remest_openMM_gpu.sif

Singularity>

remest_qiime_core_2022.8:

This container is built starting from a Linux Qiime core container in which Cutadapt and
Gprename have been installed. This is NOT an Nvidia accelerated container but it can still take
advantage of the great performance of Xeon processors. This means that you do have not to
request GPUs to run it.

Start the container with an execution limit of 4 hours by:

cstart -h 4 /software/remest_qiime_core_2022.8.sif

Start Qiime:

Singularity> qiime

Start Cutadapt:

Singularity> cutadapt

Start Gprename:

Singularity> gprename

Release 1.2 - 07/02/2023 by Prof. Emanuele Lattanzi

remest_tensorflow_22.10.1-tf2-py3_gpu:

The Tensorflow container is an Nvidia accelerated container whit python3 and
TensorFlow_v2.10 pre-installed. The pip command is also available within the container so
you can download your preferred python libraries. The current version of Jupyter Notebook is
also available to execute notebooks (.pynb) scripts.

Use cstart to start the container and access with 12 hours of running limits and access to
one GPU; then start using python on the Singularity shell:

cstart -g 1 -h 12 /software/remest_tensorflow_22.10.1-tf2-py3_gpu.sif

… …

Singularity> python

To run Jupyter Notebook and mount your home inside of it use:

Singularity> jupyter notebook --notebook-dir=/home/<user>/ --port=8888

[I 17:16:59.705 NotebookApp] Jupyter Notebook 6.4.10 is running at:

[I 17:16:59.705 NotebookApp]
http://hostname:8888/?token=5c3f836a805fb41627d26200434b50dd613c210357f3678c

[I 17:16:59.705 NotebookApp] Use Control-C to stop this server and shut down all
kernels (twice to skip confirmation).

Once started you can access the notebook by opening the link reported on the shell, together
with the generated token, by means of the browser. Notice that, you are not allowed to do port
remapping between the container and the host machine so, to select a different port on which
to launch Jupyter, you have to use the --port option on the jupyter launch command.

6.Get your own Singularity container

Obtaining the Image using the pull Command:

Some software is provided as a Singularity image with the .sif or .simg file extension. More
commonly, however, a Docker image will be provided and this must be converted to
a Singularity image. For instance, you can download and convert a Docker image to a
Singularity image with:

$ singularity pull docker://hello-world

This will produce the file hello-world_latest.sif in the current working directory.

When looking for containerized software try these repositories:

● Docker Hub (https://hub.docker.com/)
● NVIDIA GPU Cloud (https://ngc.nvidia.com/catalog/containers)

https://hub.docker.com/
https://ngc.nvidia.com/catalog/containers

Release 1.2 - 07/02/2023 by Prof. Emanuele Lattanzi

● Singularity Cloud Library (https://cloud.sylabs.io/library)
● Singularity Hub (https://singularityhub.github.io/singularityhub-docs/)
● Quay.io (https://quay.io/)
● BioContainers (https://biocontainers.pro/)

https://cloud.sylabs.io/library
https://singularityhub.github.io/singularityhub-docs/
https://quay.io/
https://biocontainers.pro/

